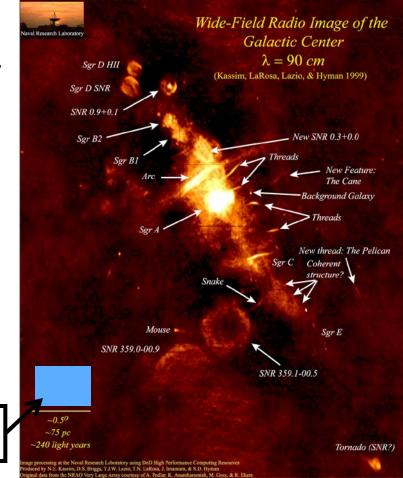
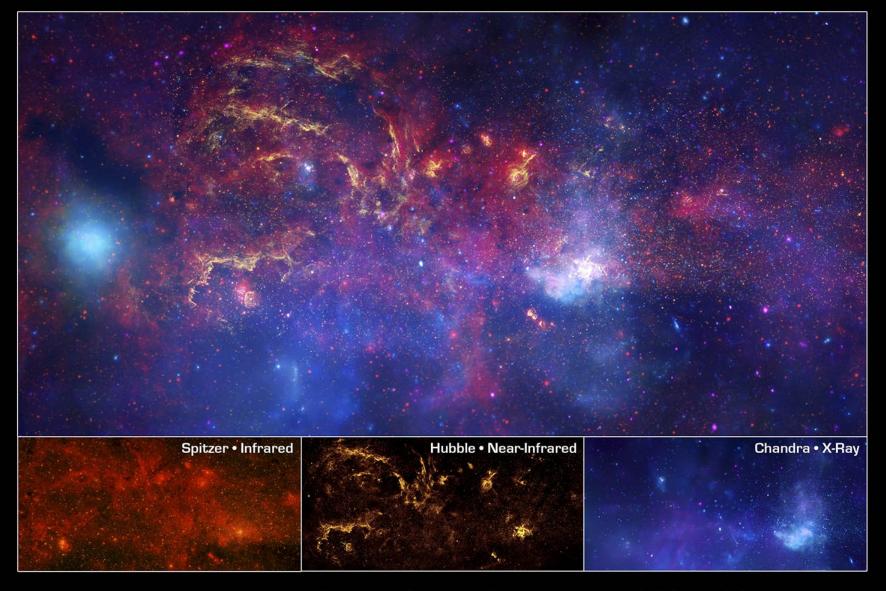
The Beast At The Center

Karl Jansky (1905 – 1950)

- U of Wisconsin undergrad.
- Built a radio antenna on a rotating platform – "Jansky's merry-go-round".
- In 1933 he discovered radio emission from the center of the Milky Way galaxy – he called it Sagittarius A object.
- He died at the age of 44 probably, missing the Nobel Prize by only a few years.

Reber Radio Telescope

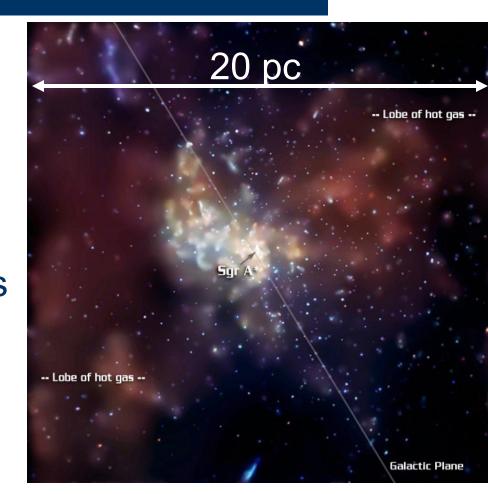

- First radio telescope in the world – build by Grote Reber (1911 – 2002) in IL from Karl Jansky's blueprints.
- An astronomical unit of radio brightness – Jansky is named after Karl.



Center of the Milky Way in Radio

Sagittarius A (Sgr A)
 object actually consists of
 3 different things: an old
 hyper-nova remnant (Sgr
 A East), a cloud of gas
 (Sgr A West), and the
 true center of our Galaxy:
 Sagittarius A*.

Next image



Great Observatories' Unique Views of the Milky Way

Spitzer Space Telescope • Hubble Space Telescope • Chandra X-Ray Observatory


Center of the Milky Way in X-rays

- There is a lot of Xray activity at the very center of the Milky Way.
- It appears as if Sgr
 A* is blowing hot gas
 away from the
 Galactic plane.

Stellar Orbits Around Sgr A*

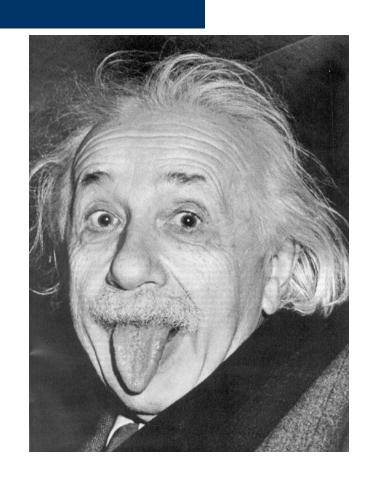
- Since 1996, astronomers were tracking orbits of individual stars around Sgr A*.
- Stars move very fast near it – up to 5,000 km/s.

Question

- From the sizes and periods of stellar orbits around Sgr A*, we can determine:
 - A: masses of orbiting stars.
 - B: mass of Sgr A*.
 - C: mass of the Milky Way galaxy.
 - D: density of gas at the Milky Way center.
 - E: that astronomers have nothing better to do.

Mass of Sagittarius A*

 From stellar orbits, in particularly S2, we can measure the mass of Sgr A* - recall Kepler's third law:


$$G(M_1 + M_2)P^2 = 4\pi^2 R^3$$

Result: M_{Sgr A*} = (3.3±0.7)×10⁶ M_☉ (3.3 million suns). Rather large for an object less than 0.37AU in radius!

- Gas is blowing away
- In the mid of Milky Way.
- Stars whiz by like specs of light,
- Hurled by colossal might.
- What can take on such a role?
- Make a guess it's a black hole!

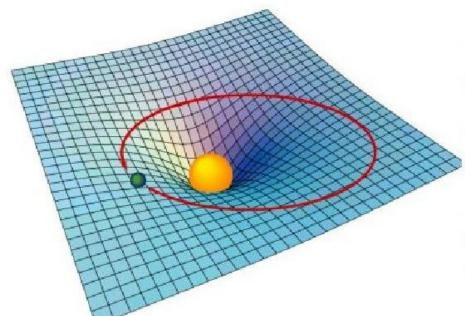
Albert Einstein (1879 – 1955)

- Began his career as patent clerk in 1902.
- In 1905 developed Special Theory of Relativity.
- In 1908 became Assistant Professor at Bern.
- In 1915 developed General Theory of Relativity.
- In 1921 got Nobel Prize.

General Relativity

 Recall, that in Newtonian Mechanics there is this freak coincidence: the inertial mass is very close to the gravitational mass.

$$m_{\rm in} = m_{\rm gr}$$


- Einstein resolved it in one shot: this is no coincidence, it is a law if nature!
- There are no free lunches: he had to face the ramifications, and those were severe.

Relativity of Space and Time

- As the result, space and time lose their absolute being – they become *relative*. We often talk about *space-time* as being one common arena for physical reality.
- Space also becomes curved (rather than being flat), and time becomes non-uniform (it flows at different rates in different places).
- In GR freely-falling objects try to move straight, but there are no straight lines anymore...

Curved Space

 Freely-falling objects are moving along geodesic lines – the straightest lines there are.

- Imagine space as a stretched rubber sheet.
- A mass on the surface will cause a deformation.
- Another mass dropped onto the sheet will roll toward that mass.

Einstein Equations: Physics

- Equations of GR relate the curvature of space-time (its geometry), and its contents (matter + energy).
- Symbolically, they are

Geometry = Matter + Energy

- Which side is the cause?
 - A: geometry
 - B: matter + energy

Einstein Equations: Math

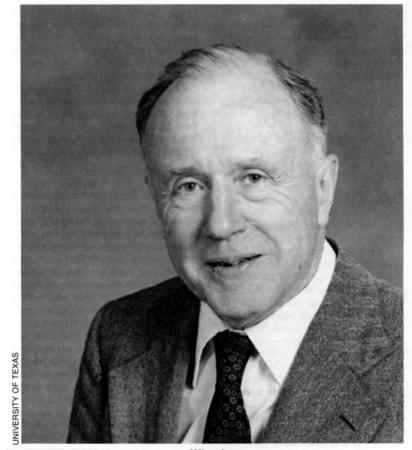
$$\frac{1}{2}g^{rs}\left(-\frac{\partial^{2}g_{ij}}{\partial x^{r}\partial x^{s}} + \frac{\partial^{2}g_{is}}{\partial x^{r}\partial x^{j}} + \frac{\partial^{2}g_{rj}}{\partial x^{i}\partial x^{s}} - \frac{\partial^{2}g_{rs}}{\partial x^{i}\partial x^{j}}\right) + \frac{1}{4}g^{qp}\left(-\frac{\partial g_{is}}{\partial x^{p}} + \frac{\partial g_{pi}}{\partial x^{s}} + \frac{\partial g_{pi}}{\partial x^{s}} + \frac{\partial g_{pi}}{\partial x^{s}}\right) \times \left(\frac{\partial g_{qj}}{\partial x^{r}} + \frac{\partial g_{qr}}{\partial x^{j}} - \frac{\partial g_{rj}}{\partial x^{q}}\right) - \frac{1}{4}g^{qp}\left(-\frac{\partial g_{ij}}{\partial x^{p}} + \frac{\partial g_{pi}}{\partial x^{j}} + \frac{\partial g_{pj}}{\partial x^{i}}\right)\left(\frac{\partial g_{qr}}{\partial x^{s}} + \frac{\partial g_{qs}}{\partial x^{s}} - \frac{\partial g_{rs}}{\partial x^{q}}\right) - \frac{1}{4}g_{ij}g^{rs}g^{uv}\left(-\frac{\partial^{2}g_{rs}}{\partial x^{u}\partial x^{v}} + \frac{\partial^{2}g_{rv}}{\partial x^{u}\partial x^{s}} + \frac{\partial^{2}g_{us}}{\partial x^{r}\partial x^{v}} - \frac{\partial^{2}g_{uv}}{\partial x^{r}\partial x^{s}}\right) + \frac{1}{8}g_{ij}g^{rs}g^{uv}g^{qp}\left(\frac{\partial g_{qr}}{\partial x^{v}} + \frac{\partial g_{qv}}{\partial x^{r}} - \frac{\partial g_{rv}}{\partial x^{q}}\right)\left(\frac{\partial g_{ps}}{\partial x^{u}} + \frac{\partial g_{pu}}{\partial x^{s}} - \frac{\partial g_{uv}}{\partial x^{p}}\right) - \frac{1}{8}g_{ij}g^{rs}g^{uv}g^{qp}\left(\frac{\partial g_{qr}}{\partial x^{s}} + \frac{\partial g_{qs}}{\partial x^{r}} - \frac{\partial g_{rs}}{\partial x^{q}}\right)\left(\frac{\partial g_{pu}}{\partial x^{v}} + \frac{\partial g_{pv}}{\partial x^{u}} - \frac{\partial g_{uv}}{\partial x^{p}}\right) = \frac{8\pi G}{c^{4}}T_{ij}.$$

Dynamical Space

- In GR space becomes a dynamical quantity.
 Space can be curved, perturbed, deformed in arbitrary way, and these deformations can change with time.
- Distortions of space can move those are called gravitational waves.
- Space can reconnect with itself wormholes.
- Space can flow into a point of infinite density singularity – making a black hole.

Black Holes

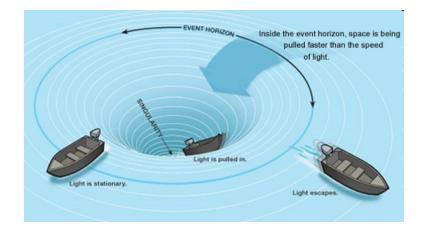
- Einstein published his paper on GR in Nov 1915.
- Karl Schwarzschild (1873-1916), German physicist turned soldier, found black holes mathematically in 1916.

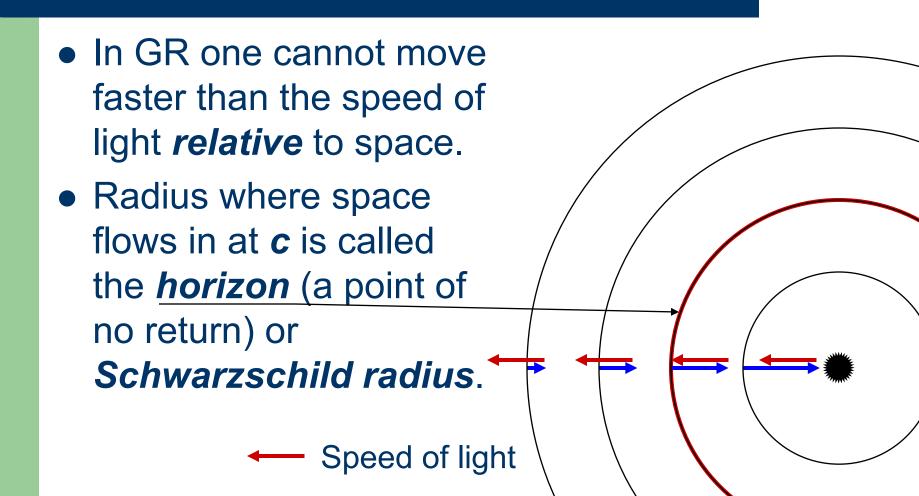


 Schwarzschild died on the Russian front in May 1916 from <u>disease</u>.

We did not kill him!!!

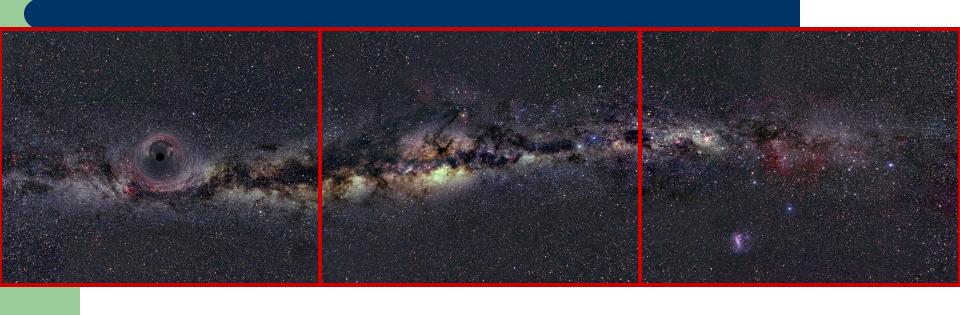
Black Holes


- The term itself coined by John Wheeler (1911 – 2008) in 1967.
- There are many ways to think about black holes.
 The best one is a "river of space" analogy.


Wheeler

River Model of Black Holes

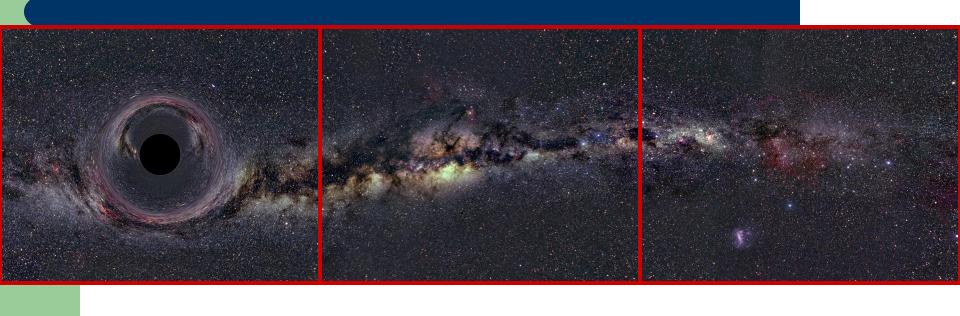
 Boat swimming against the river current can move around in slow places, but falls down the waterfall.

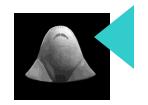

River Model of Black Holes

Flowing Space

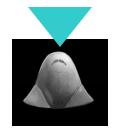
- If the space flows into a black hole, wouldn't it all disappear eventually? No – there are no laws for the "conservation of space". Space can be destroyed and created.
- The universe expands because the space between galaxies expands – there is "more" space today than we had yesterday. That's ok – the mess in my kid's room does the same....

Falling into a Black Hole: 100 R_s

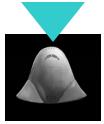




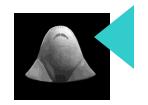
Falling into a Black Hole: 20 R_s



Falling into a Black Hole: 4.5 R_s

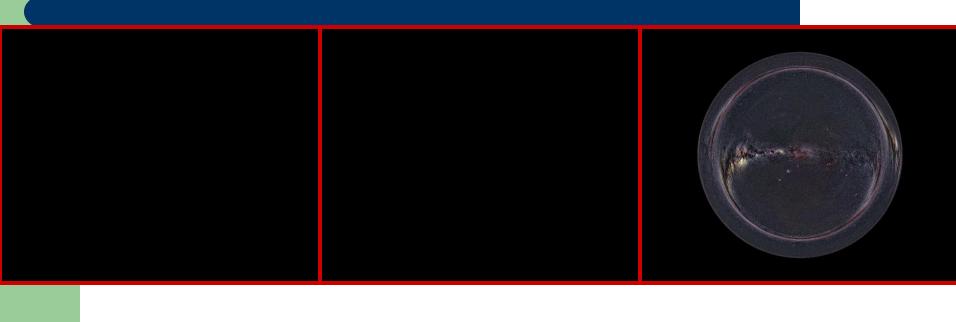


Falling into a Black Hole: 2.5 R_s

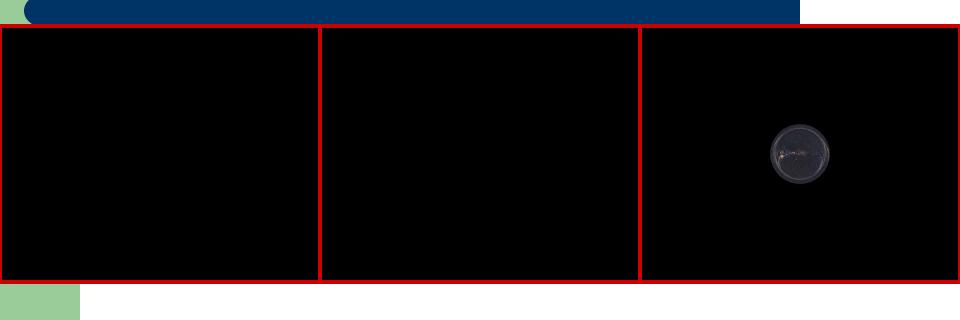


Falling into a Black Hole: 1.5 R_s

Falling into a Black Hole: 1.2 R_s

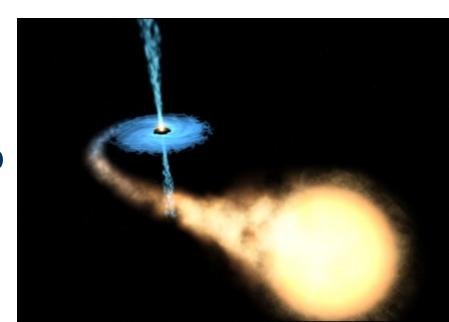


Falling into a Black Hole: 1.05 R_s



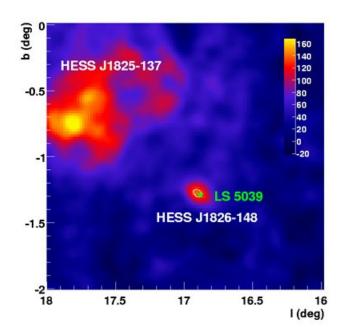
Falling into a Black Hole: 1.005 R_s

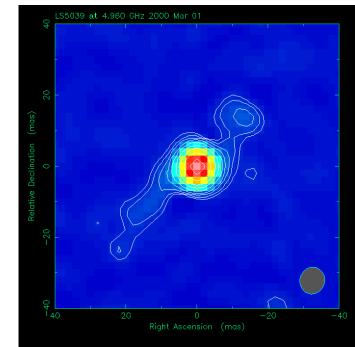
Sci-Fi Question


- Imagine that in 2511 a spaceship was orbiting a neutron star somewhere in the Galaxy. Suddenly, the neutron star started collapsing and quickly turned into a black hole. What would happen to a spaceship?
 - A: Nothing.
 - B: It will get sucked into a black hole.
 - C: It will lose balance and will fly away.
 - D: Tidal forces will crash it instantly.

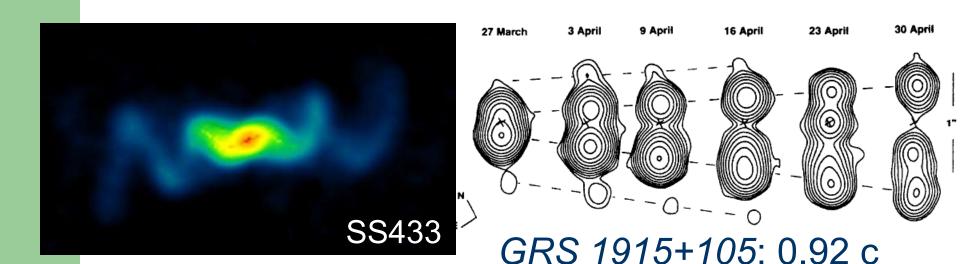
Why Black Holes Are Not Black

- Recall, that very massive stars (above about 30 M_☉) end up as black holes.
- Most of these stars form in binary systems. A companion is likely to be less massive – hence, it evolves slower.
- Many stellar mass black holes have Red Giant companions. Can you guess what happens?


Accreting Black Holes


- A black hole in a binary system is likely to accrete gas from the companion. An accretion disk then forms.
- In the inner part of the disk the gas rotates close to the speed of light; friction heats it up to ~100 billion K.
- Would it remain dark?

"Microquasars"


Such black holes are called *microquasars*.
 They are very bright in gamma-rays, X-rays, and also emit in radio.

Microquasar Jets

 Many microquasars have jets. The most famous is dubbed SS433 – its jet precesses with a period of 160 days.

